Frequency-Magnitude Distributions
Distributions
MagnitudeDistributions.GRclassic
— TypeGRclassic(b, M0)
The classic Gutenberg-Richter law can be expressed as an exponential distribution with rate β and location M0
:
\[f(x; \beta, M_{0}) = \beta e^{-\beta (x-M_{0})}, \quad x ≥ M_{0}\]
M0
is the minimum magnitude. β and the b-value b
are linked by the following relation: $\beta = blog(10)$.
GRclassic(1.0, 0.5) # distribution with a b-value of 1 and minimum magnitude of 0.5
bvalue(d) # get the b-value
rate(d) # get β
location(d) # get M0
params(d) # get the parameters (b, M0)
Distribution fitting
Distributions.fit_mle
— Methodfit_mle(D::Type{<:GRclassic}, mags, M0)
Use the maximum likelihood method to determine the GRclassic
distribution fitting the input data. The function calculates the b-value with the method of Aki-Utsu.
Arguments
D
: distribution type (seeGRclassic(b, M0)
).mags
: array storing magnitude values greater than or equal to the magnitude of completenessM0
.M0
: magnitude of completeness. See Magnitude of completeness for methods that can be used to estimate it.
The standard error affecting the b-value can be estimated with fit_stderr(D::Type{<:GRclassic}, mags)
References
- Aki, 1965. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits. Belletin of the Earthquake Research Institute, 43, 237-239.
- Utsu 1966. A Statistical Significance Test of the Difference in b-value between Two Earthquake Groups. Journal of Physics of the Earth, 14, 37-40.
MagnitudeDistributions.fit_binned
— Methodfit_binned(D::Type{<:GRclassic}, mags, M0, ΔM)
Determine the GRclassic
distribution fitting the input data. This function corresponds to the method of Tinti and Mulargia, which was designed to properly estimate the b-value from binned magnitude values.
Arguments
D
: distribution type (seeGRclassic(b, M0)
).mags
: array storing binned magnitude values greater than or equal to the magnitude of completenessM0
M0
: magnitude of completeness. See Magnitude of completeness for methods that can be used to estimate it.ΔM
: bin width used to group the magnitude values.`
The standard error affecting the b-value can be estimated with fit_stderrbinned(D::Type{<:GRclassic}, mags, ΔM)
References
- Tinti and Mulargia, 1987. Confidence intervals of b values for grouped magnitudes. Bulletin of the Seismological Society of America, 77 (6), 2125–2134.
MagnitudeDistributions.fit_stderr
— Functionfit_stderr(D::Type{<:GRclassic}, mags)
Apply the method of Shi and Bolt to calculate the standard error affecting a b-value determined with the method of Aki-Utsu fit_mle(D::Type{<:GRclassic}, mags, M0)
.
Arguments
D
: distribution type (seeGRclassic(b, M0)
).mags
: array storing magnitude values greater than or equal to the magnitude of completeness.
References
- Shi and Bolt, 1982. The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72, 1677-1687.
MagnitudeDistributions.fit_stderrbinned
— Functionfit_stdbinned(D::Type{<:GRclassic}, mags, ΔM)
Calculate the standard error affecting a b-value estimated with the method of Tinti and Mulargia (fit_binned(D::Type{<:GRclassic}, mags, M0, ΔM)
).
Arguments
D
: distribution type (seeGRclassic(b, M0)
).mags
: array storing magnitude values greater than or equal to the magnitude of completeness.ΔM
: bin width used to group the magnitude values.`
References
- Tinti and Mulargia, 1987. Confidence intervals of b values for grouped magnitudes. Bulletin of the Seismological Society of America, 77 (6), 2125–2134.
Sampling
Base.rand
— Methodrand(rng::AbstractRNG, d::UnivariateDistribution)
Generate a scalar sample from d
. The general fallback is quantile(d, rand())
.
Parameter Retrieval
StatsBase.params
— Methodparams(d::UnivariateDistribution)
Return a tuple of parameters. Let d
be a distribution of type D
, then D(params(d)...)
will construct exactly the same distribution as $d$.
Distributions.scale
— Methodscale(d::UnivariateDistribution)
Get the scale parameter.
Distributions.location
— Methodlocation(d::UnivariateDistribution)
Get the location parameter.
Distributions.rate
— Methodrate(d::UnivariateDistribution)
Get the rate parameter.
MagnitudeDistributions.bvalue
— Methodbvalue(::UnivariateDistribution)
Get the b-value
Probability Evaluation
Distributions.pdf
— Methodpdf(d::UnivariateDistribution, x::Real)
Evaluate the probability density (mass) at x
.
See also: logpdf
.
Distributions.logpdf
— Methodlogpdf(d::UnivariateDistribution, x::Real)
Evaluate the logarithm of probability density (mass) at x
.
See also: pdf
.
Distributions.cdf
— MethodDistributions.logcdf
— Methodlogcdf(d::UnivariateDistribution, x::Real)
The logarithm of the cumulative function value(s) evaluated at x
, i.e. log(cdf(x))
.
Distributions.ccdf
— Methodccdf(d::UnivariateDistribution, x::Real)
The complementary cumulative function evaluated at x
, i.e. 1 - cdf(d, x)
.
Distributions.logccdf
— Methodlogccdf(d::UnivariateDistribution, x::Real)
The logarithm of the complementary cumulative function values evaluated at x, i.e. log(ccdf(x))
.
Misc
MagnitudeDistributions.avalue
— Methodavalue(::UnivariateDistribution, N::Real, ΔM::Real)
Get the a-value of a frequency-magnitude distribution composed of N
events grouped into magnitude bins of width ΔM
.